

COLD GAS DYNAMIC SPRAY COATING TECHNOLOLGY

Centre for Engineered Coatings

International Advanced Research Centre for Powder Metallurgy and New Materials

Balapur PO, Hyderabad-500 005, India

Overview

Cold gas dynamic spray (also called Cold Spray or Kinetic Spray) involves accelerating micron sized powder particles to supersonic velocities resulting in the formation of dense, thick and pure coatings with high deposition rates. Cold spray is a low temperature high velocity variant of thermal spray family. This technique has very high deposition rates and deposition efficiencies. Since there is no heating of powders, retention of powder properties in the coating is possible.

Technology Highlights

- Indigenously developed state of the art PLC based automated portable control panel
- Different set of nozzles
 - For Low melting materials (polymer based)
 - High deposition rate or coverage area
 - Low deposition rate or coverage area
 - For Ni based materials, Steels (Optional)

- Compressed air as process and carrier gas
- Max Pressure-20 bar; Max Temperature-600°C
- Cu, Al, Ag, Zn, Sn,Ni, SS, Ta, Nb, Ti and alloys and composites

Material	Application					
Copper	Electrical contacts, lugs, EMI shielding					
	Electrical conductivity, corrosion,					
Silver	oxidation resistance/Cu lugs, high					
	current contacts and decorative					
Zinc	Galvanic protection/cathodic protection					
	of steels					
Tantalum and	High temperature corrosion resistance,					
Niobium	biomedical, sputter target					
Titanium	Corrosion resistance, biomedical					
	applications					
Tin	Electrical contacts					
Ctool	Structural and corrosion resistance					
Sleer	applications					
Nickel, Ni-Cr,	Hot oxidation					
Inconel	Ποι οχιαατίση					
Tungsten/Copper	Heat sink applications					
Aluminium	Repair and refurbishment, corrosion					
Alummum	resistance					
High entropy alloys	High temperature applications					

Cold Spray Gun

Power Supply and Control Panel for Cold Spray Coating System

Ag Coating on Steel

Technology Status

- Application development activities are in progress
- The technology is ready for transfer and in progress

*Intellectual Property Development Indices

AI Coating on Aircraft Part

Zn Coated Fuel **Filler Tube**

Al Alloy Specimens After Repair

IPDI	1	2	3	4	5	6	7	8	9	10
Activities	Basic concepts and understanding of underlying scientific principles	Shortlisting possible applications	Research to prove technical feasibility for targeted application	Coupon level testing in stimulated conditions	Check repeatability/ consistency at coupon level	Prototype testing in real-life conditions	Check repeatability/ consistency at prototype level	Reassessing feasibility (IP, competition technology, commercial)	Initiate technology transfer	Support in stabilizing production
Status										